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Deceptive Means: 
The Average Guy's Guide to EPS Growth Rates 

Lee Humphries 
 
 
Crystal balls are in short supply, especially in the stock market.  Yet every investor wants to know 
the growth rate of future earnings per share (EPS).  While the norms of a company's past EPS 
growth are no sure indicator of the future, they do lend perspective.   
 
If you decide to calculate these norms, it is important to do it correctly.  Otherwise, bogus results 
will warp your frame of reference.  Here are the procedures to use and the pitfalls to avoid when 
you compute growth-rate norms.   
 

* * * 
 
How to begin.  Collect a company's annual EPS data for an extended time�say, seven to ten 
years.  Arrange the EPS in chronological order.  All EPS must be positive, as in this ten-year 
sequence from a large southeastern bank. 
 

$2.25, $2.47, $2.76, $3.13, $3.04, $3.50, $4.30, $4.70, $4.66, $4.73 
 
Make ratios of the sequence's adjacent EPS, putting the earlier EPS in the ratio's denominator 
and the later EPS in its numerator, like this. 
 

$2.47/$2.25 
$2.76/$2.47 
$3.13/$2.76 
$3.04/$3.13 
$3.50/$3.04 
$4.30/$3.50 
$4.70/$4.30 
$4.66/$4.70 
$4.73/$4.66 

 
Calculate the values of the ratios, dividing each ratio's denominator into its numerator.  (These 
values are rounded.) 
 

$2.47/$2.25 = 1.0978 
$2.76/$2.47 = 1.1174 
$3.13/$2.76 = 1.1341 
$3.04/$3.13 = 0.9712 
$3.50/$3.04 = 1.1513 
$4.30/$3.50 = 1.2286 
$4.70/$4.30 = 1.0930 
$4.66/$4.70 = 0.9915 
$4.73/$4.66 = 1.0150 



The ratio values are annual growth factors for the EPS.  A growth factor always equals 1+g.  The 
number 1 stands for 100% of the earlier EPS.  And g is the EPS growth rate�it tells us the 
proportion of the earlier EPS (the denominator) by which the later EPS (the numerator) increased 
or decreased. 
 
Since the growth factor is 1+g, the growth rate g is the growth factor minus 1.  Here are two 
growth-rate examples from the above data. 
 

• g, the growth rate = [growth factor - 1] = [($3.13/$2.76) � 1] = 1.1341 � 1 = .1341, which 
is positive EPS growth of +13.41%.   

• g, the growth rate  = [growth factor - 1] = [($3.04/$3.13 � 1] = 0.9712 � 1 = -.0288, which 
is negative EPS growth of -2.88% 

 
Once we have calculated the EPS growth factors, we can examine their year-to-year volatility�
an important thing to look into.  But more significantly, we can determine their norms; specifically,  
(1) the growth factors' mean (i.e., their average value) and (2) the growth factors' standard 
deviation (i.e., the degree to which they are scattered around their mean). 
 
A pitfall: the arithmetic mean and standard deviation.   There are different kinds of means.  
The most familiar is the arithmetic mean.  To calculate the arithmetic mean of n growth factors, 
we add them and divide their sum by n, as follows:  
 

(1.0978+1.1174+1.1341+. 9712+1.1513+1.2286+1.0930+. 9915+1.0150)/9 
= 9.7999/9 
= 1.0889, the arithmetic mean of the growth factors�the quotient of a nine-number sum 

divided by nine 
 
The scatter of growth-factor values around their arithmetic mean is measured by the arithmetic 
standard deviation.  The labor-intensive computation of the arithmetic standard deviation is 
programmed into spreadsheets and inexpensive scientific calculators.   Most statistics books 
explain the underlying math. 
 
The arithmetic standard deviation is a quantity.  Multiples of that quantity are added to (or 
subtracted from) the arithmetic mean to determine the set of values that lie within a given range 
of dispersion.  To determine the value that lies n standard deviations from the mean, we must 
multiply the arithmetic standard deviation by n. 
 
The above growth factors have an arithmetic standard deviation of .083.  The growth factor that 
lies, say, two standard deviations above the mean is 1.2549, which equals the mean plus two 
standard deviations: 1.0889 + 2(.083) = 1.2549.  The value that lies two standard deviations 
below the mean is .9229, which equals the mean minus two standard deviations: 1.0889 � 
2(.083) = .9229. 
 
Later, we'll use these procedures as stepping-stones to our goal�but only as that.  In and of 
themselves, the arithmetic mean and standard deviation are inappropriate measures of growth-
factor norms. 
 
The geometric mean and standard deviation.  The appropriate measures of growth-factor 
norms are the less-familiar geometric mean and standard deviation.  
 
To calculate the geometric mean of n growth factors, we multiply the numbers together and take 
the nth root of their product, as shown here.  
 

[(1.0978)(1.1174)(1.1341)(.9712)(1.1513)(1.2286)(1.0930)(.9915)(1.0150)] 1/9 
= 2.10221/9 
= 1.0861, the geometric mean of the growth factors�the ninth root of a nine-factor product 



 
We can also find the geometric mean using a shortcut: Divide the final year's earnings (EPSn) by 
the first year's earnings (EPS0), and take the nth root of the result.   In our banking example, the 
final EPS is $4.73, the first EPS is $2.25, and n is nine because the ten EPS span nine year-long 
periods.  In general, the number of growth factors is one less than the number of EPS. 
 

(EPSn/EPS0) 1/n 
= ($4.73/$2.25) 1/9  
=(2.1022) 1/9   
= 1.0861, the geometric mean of the growth factors 

 
The scatter of growth-factor values around their geometric mean is measured by the geometric 
standard deviation.  The geometric standard deviation can be found using a spreadsheet or a 
scientific calculator, but first the growth factors must be converted into logarithms (as explained 
below). 
 
In contrast to the arithmetic standard deviation, the geometric standard deviation is not a quantity; 
it is a factor.  Powers of the geometric standard deviation are multiplied by (or divided into) the 
geometric mean to determine the set of values that lie within a given range of dispersion.  To 
determine the value that lies n geometric standard deviations from the mean, we must raise the 
geometric standard deviation to the nth power. 
 
The above growth factors have a geometric standard deviation of 1.0795.  The growth factor that 
lies, say, two standard deviations above the mean is 1.2657�which equals the mean times the 
second power of the standard deviation: (1.0861)(1.07952) = 1.2657.  And the value that lies two 
standard deviations below the mean is .9320�which equals the mean divided by the second 
power of the standard deviation: 1.0861/(1.07952) = .9320. 
 
A comparison of arithmetic and geometric norms.  In the above examples, there is little 
difference between the growth factors' arithmetic mean (1.0889) and geometric mean (1.0861).  
Similarly, there is little difference in the values that lie two standard deviations above those 
means�1.2549 (arithmetic) and 1.2657 (geometric).  And little difference in the values that lie 
two standard below those means�.9229 (arithmetic) and .9320 (geometric).  So why even bother 
with the geometric mean and standard deviation? 
 
Because analytical tools must fit the kind of data they are examining�if they don't, they can 
generate seriously distorted results.   
 
The arithmetic mean and arithmetic standard deviation are sum-based values.  As such, they are 
appropriate for additive processes.  But earnings growth is not additive; it is multiplicative.  The 
appropriate measures for EPS growth factors are the geometric mean and geometric standard 
deviation, which are product-based values. 
 
To drive this point home, we'll apply both the arithmetic mean and the geometric mean to our 
bank's EPS sequence and examine the results.  Recall that a ten-EPS sequence has nine growth 
factors.  The first EPS times the nine growth factors equals the final EPS. 
 

EPS0[the n growth factors] = EPSn 
$2.25[(1.0978)(1.1174)(1.1341)(.9712)(1.1513)(1.2286)(1.0930)(.9915)(1.0150)]  
= $2.25[2.1022]  
= $4.73, the final EPS 

 
It follows that the first EPS times nine mean-growth factors should also equal the final EPS.  But 
when we use the arithmetic mean, 1.0889, this doesn't work out.  The result is not the final EPS 
of $4.73, but $4.84, which is eleven cents higher. 
 



$2.25[(1.0889)(1.0889)(1.0889)(1.0889)(1.0889)(1.0889)(1.0889)(1.0889)(1.0889)]  
= $2.25[1.08899]  
= $2.25[2.1522]  
= $4.84 
≠ $4.73, the final EPS 

 
It is the geometric mean, 1.0861, that produces the final EPS, $4.73. 
 

$2.25[(1.0861)(1.0861)(1.0861)(1.0861)(1.0861)(1.0861)(1.0861)(1.0861)(1.0861)]  
= $2.25[1.08619]  
= $2.25[2.1029] 
= $4.73, the final EPS  
(Because our geometric mean is rounded, the value of 1.08619 is slightly higher than the 

product of the nine annual growth factors.) 
 
Average dangers.  We now turn to two EPS sequences whose arithmetic and geometric means 
have markedly different values.   
 
High or higher?  The first sequence comes from a manufacturer of medical devices.  Here are its 
EPS in chronological order. 
 

$0.32, $0.45, $0.55, $0.48, $0.40, $0.90, $0.85, $0.80, $1.30, $1.60 
 
 
And here are the resulting growth factors. 
 

$0.45/$0.32 = 1.4063 
$0.55/$0.45 = 1.2222 
$0.48/$0.55 = 0.8727 
$0.40/$0.48 = 0.8333 
$0.90/$0.40 = 2.2500 
$0.85/$0.90 = 0.9444 
$0.80/$0.85 = 0.9412 
$1.30/$0.80 = 1.6250 
$1.60/$1.30 = 1.2308 

 
The arithmetic mean of these factors is 1.2584, implying that EPS grew at an average annual rate 
of 25.84%.  Had that been so, the first EPS, $0.32, would have grown into $2.53 in the last year�
which, of course, it did not.  
 

EPS0 (1+g)n = EPSn 
$0.32(1.25849) = $2.53 
≠ $1.60, the final EPS 

 
The true mean is 1.1958, the geometric mean.  The first EPS, growing at an annual rate of 
19.58%, does indeed become the final EPS, $1.60. 
 

EPS0 (1+g)n = EPSn 
$0.32(1.19589) = $1.60, the final EPS 

 
If you accept the arithmetic mean for the norm, you will overstate the average annual growth rate 
by 6.26%. 
 
 



Growing or shrinking?  We end this section with the EPS sequence of a global communications 
company, where there is a dramatic difference between the two means.  Here are its EPS in 
chronological order. 
 

$1.47, $1.84, $2.01, $1.57, $1.87, $2.66, $3.95, $0.22, $1.67, $1.27 
 
And here are the resulting growth factors. 
 

$1.84/$1.47 = 1.2517 
$2.01/$1.84 = 1.0924 
$1.57/$2.01 = 0.7811 
$1.87/$1.57 = 1.1911 
$2.66/$1.87 = 1.4225 
$3.95/$2.66 = 1.4850 
$0.22/$3.95 = 0.0557 
$1.67/$0.22 = 7.5909 
$1.27/$1.67 = 0.7605 

 
The arithmetic mean of these factors is 1.7368, implying that EPS grew at an average annual rate 
of 73.68%.  Had that been so, the first EPS, $1.47, would have grown into a whopping $211.38 in 
the final year! 
 

EPS0 (1+g)n = EPSn 
$1.47(1.73689) = $211.38 
≠ $1.27, the final EPS 

 
The true mean is the geometric mean, 0.9839, which reveals an average annual decrease in EPS 
of -1.61%.  The first EPS growing (negatively) by that annual factor does indeed become the final 
EPS, $1.27. 
 

EPS0 (1+g)n = EPSn 
$1.47(0.98399) = $1.27, the final EPS 

 
If you accept the arithmetic mean for the norm, you will think that EPS growth has been 
skyrocketing�nothing could be farther from the truth. 
 
A side trip through the garden of logarithms.   By definition, the standard deviation measures 
a data set's dispersion around its arithmetic mean.  But we require a standard deviation around 
its geometric mean.  Are we out of luck?  Not at all!  We can find the geometric standard deviation 
using logarithms.  If you are logarithmically challenged, here's a five-paragraph mini-course. 
 
Substituting exponential numbers for ordinary numbers.  Any given positive number can be 
expressed as an exponential power of some other positive number.  The "other" number is called 
a base and the required exponent is called the logarithm (or log) of the given number.  For 
example, 1.995262315 can be expressed as 10.3 because 10.3 equals 1.995262315.  Ten is the 
base, and its exponent .3 is the log of 1.995262315.  (You can find a number's base-ten logarithm 
using the LOG function of a spreadsheet or scientific calculator.) 
 
Interpreting exponents.  The meaning of the decimal exponent .3 will be clearer if you convert it to 
its fractional equivalent 3/10.  The expression 103/10 tells us: "Raise ten to the third power" (103 = 
10*10*10 = 1000) "and take the tenth root of the result" (10001/10 = 1.995262315).  Alternatively 
and equivalently, 103/10 tells us: "Take the tenth root of ten" (101/10 = 1.258925412) "and raise the 
result to the third power" (1.2589254123 = 1.995262315).  Either way, 10.3 equals 1.995262315, 
so the base-ten logarithm of 1.995262315 is .3. 
 



A logarithm is negative when the positive number it represents is less than 1.  For example, the 
log of .501187233 is �0.3.  The negative sign in the exponent of 10-.3 indicates the reciprocal of 
10.3, which is 10.3 divided into 1.  Otherwise, the exponent has the same meaning as above.  
Thus  
 

10-.3  
= 1/10.3  
= 1/1.995262315  
= .501187233 

 
Substituting a log sum for a factor product.  The product of two or more like-based numbers is the 
sum of their exponents applied to that base.  For example, (10.0406)(10.0481) = 10.0406 + .0481 = 
10.0887.  Therefore, we can multiply ordinary positive numbers by: (1) adding their corresponding 
logarithms (i.e., their base-ten exponents) and (2) converting the sum back into an ordinary 
number, like this. 
 
 (1.097994084)(1.117120445)  

= (10.0406)( 10.0481) 
= 10.0406 + .0481  
= 10.0887  
= 1.226591639 
The product 1.226591639 is the antilog of .0887 (i.e., ten raised to the power of the logarithm 

.0887). 
 
Substituting a log quotient for a product root.  The nth root of an exponential power is the 
exponent divided by n and applied to the same base.  For example, the ninth root of 10.0774 is 
10.0774/9 = 10.0086 = 1.02.  Thus, we can find the nth root of a product by adding its factors' logs, 
dividing the sum by n, and converting the quotient to an ordinary number�as here, where we find 
the square root of a two-factor product. 
 
 [(1.097994084)(1.117120445)]1/2 

= [(10.0406)( 10.0481)]1/2 
= 10 (.0406 + .0481) / 2 

 = 10.0887 / 2 
 = 10.04435 
 = 1.107515997, the product's square root (the antilog of .04435) 
 
Back to business.  Taken in combination, these facts let us use logarithms to compute the 
geometric mean and the geometric standard deviation of a set of growth factors.    
 

• First, we add the logs of the n growth factors and divide the sum by n to get the logs' 
arithmetic mean.  The arithmetic mean of the logs is the log of the growth factors' 
geometric mean. 

 
• Then, we find the logs' arithmetic standard deviation.  The arithmetic standard deviation 

of the logs is the log of the growth factors' geometric standard deviation. 
 

• Finally, we re-express the logs' arithmetic mean and arithmetic standard deviation as 
ordinary numbers (i.e., we take their antilogs) and arrive at the factors' geometric mean 
and geometric standard deviation.  In summary: 

 
o The antilog of the logs' arithmetic mean is the geometric mean of the growth 

factors.   
 
10arithmetic mean of the factors' logs = geometric mean of the factors 
 



o The antilog of the logs' arithmetic standard deviation is the geometric standard 
deviation of the growth factors. 
 
10arithmetic standard deviation of the factors' logs = geometric standard deviation of the factors 

 
Applying the procedure.  Here again are our bank's previously calculated growth factors, 1+g, 
along with their respective base-ten logarithms, LOG (1+g).  
 

1+g LOG (1+g)
1.0978 .04052
1.1174 .04821
1.1341 .05465
0.9712 -.01269
1.1513 .06119
1.2286 .08941
1.0930 .03862
0.9915 -.00370
1.0150 .00647
LOGSUM .32268

 
 
The nine logs have a sum of .32268, an arithmetic mean of .03585 (their sum divided by nine), 
and an arithmetic standard deviation of .03322 (computed using a spreadsheet or scientific 
calculator). 
 
The geometric mean of the factors is ten to the power of the logs' arithmetic mean�i.e., 10.03585, 
which equals 1.0861. 
 
The geometric standard deviation of the factors is ten to the power of the logs' arithmetic 
standard deviation�i.e.,  10.03322, which equals 1.0795. 
 
Final pitfalls.   Even the armor of mathematical precision can't safeguard us from two remaining 
dangers. 
  
1. The danger that the norms reflect a skewed data set.  Ideally, the EPS data set should 
encompasses a complete business cycle.  A data set that contains a partial cycle will likely be 
biased, over-weighting either the high or the low growth factors.   
 
2. The danger that the norms reflect the bygone state of a changing business.  A business is 
subject to a variety of micro- and macroeconomic forces.  The norms of EPS growth are 
byproducts of these forces.  When forces are stable, norms endure�like the wave pattern at the 
confluence of merging streams.  When forces are in flux, the old norms give way to the new.  
Thus we must be vigilant for currents of change.  The predictive power of our calculated norms is 
determined by the resilience of the forces that produced them. 
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